Identification and Estimation of Simultaneous Equation Models Using Higher-Order Cumulant Restrictions
Ziyu Jiang
Papers from arXiv.org
Abstract:
Identifying structural parameters in linear simultaneous equation models is a fundamental challenge in economics and related fields. Recent work leverages higher-order distributional moments, exploiting the fact that non-Gaussian data carry more structural information than the Gaussian framework. While many of these contributions still require zero-covariance assumptions for structural errors, this paper shows that such an assumption can be dispensed with. Specifically, we demonstrate that under any diagonal higher-cumulant condition, the structural parameter matrix can be identified by solving an eigenvector problem. This yields a direct identification argument and motivates a simple sample-analogue estimator that is both consistent and asymptotically normal. Moreover, when uncorrelatedness may still be plausible -- such as in vector autoregression models -- our framework offers a transparent way to test for it, all within the same higher-order orthogonality setting employed by earlier studies. Monte Carlo simulations confirm desirable finite-sample performance, and we further illustrate the method's practical value in two empirical applications.
Date: 2025-01
New Economics Papers: this item is included in nep-dcm and nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2501.06777 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2501.06777
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().