EconPapers    
Economics at your fingertips  
 

How low-cost AI universal approximators reshape market efficiency

Paolo Barucca and Flaviano Morone

Papers from arXiv.org

Abstract: The efficient market hypothesis (EMH) famously stated that prices fully reflect the information available to traders. This critically depends on the transfer of information into prices through trading strategies. Traders optimise their strategy with models of increasing complexity that identify the relationship between information and profitable trades more and more accurately. Under specific conditions, the increased availability of low-cost universal approximators, such as AI systems, should be naturally pushing towards more advanced trading strategies, potentially making it harder and harder for inefficient traders to profit. In this paper, we leverage on a generalised notion of market efficiency, based on the definition of an equilibrium price process, that allows us to distinguish different levels of model complexity through investors' beliefs, and trading strategies optimisation, and discuss the relationship between AI-powered trading and the time-evolution of market efficiency. Finally, we outline the need for and the challenge of describing out-of-equilibrium market dynamics in an adaptive multi-agent environment.

Date: 2025-01
New Economics Papers: this item is included in nep-ain
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2501.07489 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2501.07489

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2501.07489