Bridging Root-$n$ and Non-standard Asymptotics: Dimension-agnostic Adaptive Inference in M-Estimation
Kenta Takatsu and
Arun Kumar Kuchibhotla
Papers from arXiv.org
Abstract:
This manuscript studies a general approach to construct confidence sets for the solution of population-level optimization, commonly referred to as M-estimation. Statistical inference for M-estimation poses significant challenges due to the non-standard limiting behaviors of the corresponding estimator, which arise in settings with increasing dimension of parameters, non-smooth objectives, or constraints. We propose a simple and unified method that guarantees validity in both regular and irregular cases. Moreover, we provide a comprehensive width analysis of the proposed confidence set, showing that the convergence rate of the diameter is adaptive to the unknown degree of instance-specific regularity. We apply the proposed method to several high-dimensional and irregular statistical problems.
Date: 2025-01, Revised 2025-02
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2501.07772 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2501.07772
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().