Exploratory Mean-Variance Portfolio Optimization with Regime-Switching Market Dynamics
Yuling Max Chen,
Bin Li and
David Saunders
Papers from arXiv.org
Abstract:
Considering the continuous-time Mean-Variance (MV) portfolio optimization problem, we study a regime-switching market setting and apply reinforcement learning (RL) techniques to assist informed exploration within the control space. We introduce and solve the Exploratory Mean Variance with Regime Switching (EMVRS) problem. We also present a Policy Improvement Theorem. Further, we recognize that the widely applied Temporal Difference (TD) learning is not adequate for the EMVRS context, hence we consider Orthogonality Condition (OC) learning, leveraging the martingale property of the induced optimal value function from the analytical solution to EMVRS. We design a RL algorithm that has more meaningful parameterization using the market parameters and propose an updating scheme for each parameter. Our empirical results demonstrate the superiority of OC learning over TD learning with a clear convergence of the market parameters towards their corresponding ``grounding true" values in a simulated market scenario. In a real market data study, EMVRS with OC learning outperforms its counterparts with the highest mean and reasonably low volatility of the annualized portfolio returns.
Date: 2025-01
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2501.16659 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2501.16659
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators (help@arxiv.org).