Artificial Intelligence Clones
Annie Liang
Papers from arXiv.org
Abstract:
Large language models, trained on personal data, are increasingly able to mimic individual personalities. These ``AI clones'' or ``AI agents'' have the potential to transform how people search for matches in contexts ranging from marriage to employment. This paper presents a theoretical framework to study the tradeoff between the substantially expanded search capacity of AI representations and their imperfect representation of humans. An individual's personality is modeled as a point in $k$-dimensional Euclidean space, and an individual's AI representation is modeled as a noisy approximation of that personality. I compare two search regimes: Under in person search, each person randomly meets some number of individuals and matches to the most compatible among them; under AI-mediated search, individuals match to the person with the most compatible AI representation. I show that a finite number of in-person encounters yields a better expected match than search over infinite AI representations. Moreover, when personality is sufficiently high-dimensional, simply meeting two people in person is more effective than search on an AI platform, regardless of the size of its candidate pool.
Date: 2025-01, Revised 2026-01
New Economics Papers: this item is included in nep-ain, nep-cmp and nep-mic
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2501.16996 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2501.16996
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().