Model-Adaptive Approach to Dynamic Discrete Choice Models with Large State Spaces
Ertian Chen
Papers from arXiv.org
Abstract:
Estimating dynamic discrete choice models with large state spaces poses computational difficulties. This paper develops a novel model-adaptive approach to solve the linear system of fixed point equations of the policy valuation operator. We propose a model-adaptive sieve space, constructed by iteratively augmenting the space with the residual from the previous iteration. We show both theoretically and numerically that model-adaptive sieves dramatically improve performance. In particular, the approximation error decays at a superlinear rate in the sieve dimension, unlike a linear rate achieved using conventional methods. Our method works for both conditional choice probability estimators and full-solution estimators with policy iteration. We apply the method to analyze consumer demand for laundry detergent using Kantar's Worldpanel Take Home data. On average, our method is 51.5% faster than the conventional methods in solving the dynamic programming problem, making the Bayesian MCMC estimator computationally feasible. The results confirm the computational efficiency of our method in practice.
Date: 2025-01
New Economics Papers: this item is included in nep-dcm and nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2501.18746 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2501.18746
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().