FinRLlama: A Solution to LLM-Engineered Signals Challenge at FinRL Contest 2024
Arnav Grover
Papers from arXiv.org
Abstract:
In response to Task II of the FinRL Challenge at ACM ICAIF 2024, this study proposes a novel prompt framework for fine-tuning large language models (LLM) with Reinforcement Learning from Market Feedback (RLMF). Our framework incorporates market-specific features and short-term price dynamics to generate more precise trading signals. Traditional LLMs, while competent in sentiment analysis, lack contextual alignment for financial market applications. To bridge this gap, we fine-tune the LLaMA-3.2-3B-Instruct model using a custom RLMF prompt design that integrates historical market data and reward-based feedback. Our evaluation shows that this RLMF-tuned framework outperforms baseline methods in signal consistency and achieving tighter trading outcomes; awarded as winner of Task II. You can find the code for this project on GitHub.
Date: 2025-02
New Economics Papers: this item is included in nep-cmp
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2502.01992 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2502.01992
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().