EconPapers    
Economics at your fingertips  
 

FinRL-DeepSeek: LLM-Infused Risk-Sensitive Reinforcement Learning for Trading Agents

Mostapha Benhenda
Additional contact information
Mostapha Benhenda: LAGA

Papers from arXiv.org

Abstract: This paper presents a novel risk-sensitive trading agent combining reinforcement learning and large language models (LLMs). We extend the Conditional Value-at-Risk Proximal Policy Optimization (CPPO) algorithm, by adding risk assessment and trading recommendation signals generated by a LLM from financial news. Our approach is backtested on the Nasdaq-100 index benchmark, using financial news data from the FNSPID dataset and the DeepSeek V3, Qwen 2.5 and Llama 3.3 language models. The code, data, and trading agents are available at: https://github.com/benstaf/FinRL_DeepSeek

Date: 2025-02
New Economics Papers: this item is included in nep-ain
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2502.07393 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2502.07393

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-22
Handle: RePEc:arx:papers:2502.07393