EconPapers    
Economics at your fingertips  
 

Minimal Shortfall Strategies for Liquidation of a Basket of Stocks using Reinforcement Learning

Moustapha Pemy and Na Zhang

Papers from arXiv.org

Abstract: This paper studies the ubiquitous problem of liquidating large quantities of highly correlated stocks, a task frequently encountered by institutional investors and proprietary trading firms. Traditional methods in this setting suffer from the curse of dimensionality, making them impractical for high-dimensional problems. In this work, we propose a novel method based on stochastic optimal control to optimally tackle this complex multidimensional problem. The proposed method minimizes the overall execution shortfall of highly correlated stocks using a reinforcement learning approach. We rigorously establish the convergence of our optimal trading strategy and present an implementation of our algorithm using intra-day market data.

Date: 2025-02
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2502.07868 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2502.07868

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-22
Handle: RePEc:arx:papers:2502.07868