Minimal Shortfall Strategies for Liquidation of a Basket of Stocks using Reinforcement Learning
Moustapha Pemy and
Na Zhang
Papers from arXiv.org
Abstract:
This paper studies the ubiquitous problem of liquidating large quantities of highly correlated stocks, a task frequently encountered by institutional investors and proprietary trading firms. Traditional methods in this setting suffer from the curse of dimensionality, making them impractical for high-dimensional problems. In this work, we propose a novel method based on stochastic optimal control to optimally tackle this complex multidimensional problem. The proposed method minimizes the overall execution shortfall of highly correlated stocks using a reinforcement learning approach. We rigorously establish the convergence of our optimal trading strategy and present an implementation of our algorithm using intra-day market data.
Date: 2025-02
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2502.07868 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2502.07868
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().