Causal Inference for Qualitative Outcomes
Riccardo Di Francesco and
Giovanni Mellace
Papers from arXiv.org
Abstract:
Causal inference methods such as instrumental variables, regression discontinuity, and difference-in-differences are widely used to identify and estimate treatment effects. However, when outcomes are qualitative, their application poses fundamental challenges. This paper highlights these challenges and proposes an alternative framework that focuses on well-defined and interpretable estimands. We show that conventional identification assumptions suffice for identifying the new estimands and outline simple, intuitive estimation strategies that remain fully compatible with conventional econometric methods. We provide an accompanying open-source R package, $\texttt{causalQual}$, which is publicly available on CRAN.
Date: 2025-02, Revised 2025-06
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://arxiv.org/pdf/2502.11691 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2502.11691
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().