EconPapers    
Economics at your fingertips  
 

Gaining efficiency in deep policy gradient method for continuous-time optimal control problems

Arash Fahim and Md. Arafatur Rahman

Papers from arXiv.org

Abstract: In this paper, we propose an efficient implementation of deep policy gradient method (PGM) for optimal control problems in continuous time. The proposed method has the ability to manage the allocation of computational resources, number of trajectories, and complexity of architecture of the neural network. This is, in particular, important for continuous-time problems that require a fine time discretization. Each step of this method focuses on a different time scale and learns a policy, modeled by a neural network, for a discretized optimal control problem. The first step has the coarsest time discretization. As we proceed to other steps, the time discretization becomes finer. The optimal trained policy in each step is also used to provide data for the next step. We accompany the multi-scale deep PGM with a theoretical result on allocation of computational resources to obtain a targeted efficiency and test our methods on the linear-quadratic stochastic optimal control problem.

Date: 2025-02, Revised 2025-02
References: Add references at CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2502.14141 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2502.14141

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2502.14141