EconPapers    
Economics at your fingertips  
 

LLM Trading: Analysis of LLM Agent Behavior in Experimental Asset Markets

Thomas Henning, Siddhartha M. Ojha, Ross Spoon, Jiatong Han and Colin F. Camerer

Papers from arXiv.org

Abstract: This paper explores how Large Language Models (LLMs) behave in a classic experimental finance paradigm widely known for eliciting bubbles and crashes in human participants. We adapt an established trading design, where traders buy and sell a risky asset with a known fundamental value, and introduce several LLM-based agents, both in single-model markets (all traders are instances of the same LLM) and in mixed-model "battle royale" settings (multiple LLMs competing in the same market). Our findings reveal that LLMs generally exhibit a "textbook-rational" approach, pricing the asset near its fundamental value, and show only a muted tendency toward bubble formation. Further analyses indicate that LLM-based agents display less trading strategy variance in contrast to humans. Taken together, these results highlight the risk of relying on LLM-only data to replicate human-driven market phenomena, as key behavioral features, such as large emergent bubbles, were not robustly reproduced. While LLMs clearly possess the capacity for strategic decision-making, their relative consistency and rationality suggest that they do not accurately mimic human market dynamics.

Date: 2025-02
New Economics Papers: this item is included in nep-ain, nep-exp and nep-mac
References: Add references at CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2502.15800 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2502.15800

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-25
Handle: RePEc:arx:papers:2502.15800