EconPapers    
Economics at your fingertips  
 

Enhanced Derivative-Free Optimization Using Adaptive Correlation-Induced Finite Difference Estimators

Guo Liang, Guangwu Liu and Kun Zhang

Papers from arXiv.org

Abstract: Gradient-based methods are well-suited for derivative-free optimization (DFO), where finite-difference (FD) estimates are commonly used as gradient surrogates. Traditional stochastic approximation methods, such as Kiefer-Wolfowitz (KW) and simultaneous perturbation stochastic approximation (SPSA), typically utilize only two samples per iteration, resulting in imprecise gradient estimates and necessitating diminishing step sizes for convergence. In this paper, we first explore an efficient FD estimate, referred to as correlation-induced FD estimate, which is a batch-based estimate. Then, we propose an adaptive sampling strategy that dynamically determines the batch size at each iteration. By combining these two components, we develop an algorithm designed to enhance DFO in terms of both gradient estimation efficiency and sample efficiency. Furthermore, we establish the consistency of our proposed algorithm and demonstrate that, despite using a batch of samples per iteration, it achieves the same convergence rate as the KW and SPSA methods. Additionally, we propose a novel stochastic line search technique to adaptively tune the step size in practice. Finally, comprehensive numerical experiments confirm the superior empirical performance of the proposed algorithm.

Date: 2025-02
References: Add references at CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2502.20819 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2502.20819

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2502.20819