EconPapers    
Economics at your fingertips  
 

FinArena: A Human-Agent Collaboration Framework for Financial Market Analysis and Forecasting

Congluo Xu, Zhaobin Liu and Ziyang Li

Papers from arXiv.org

Abstract: To improve stock trend predictions and support personalized investment decisions, this paper proposes FinArena, a novel Human-Agent collaboration framework. Inspired by the mixture of experts (MoE) approach, FinArena combines multimodal financial data analysis with user interaction. The human module features an interactive interface that captures individual risk preferences, allowing personalized investment strategies. The machine module utilizes a Large Language Model-based (LLM-based) multi-agent system to integrate diverse data sources, such as stock prices, news articles, and financial statements. To address hallucinations in LLMs, FinArena employs the adaptive Retrieval-Augmented Generative (RAG) method for processing unstructured news data. Finally, a universal expert agent makes investment decisions based on the features extracted from multimodal data and investors' individual risk preferences. Extensive experiments show that FinArena surpasses both traditional and state-of-the-art benchmarks in stock trend prediction and yields promising results in trading simulations across various risk profiles. These findings highlight FinArena's potential to enhance investment outcomes by aligning strategic insights with personalized risk considerations.

Date: 2025-03
References: Add references at CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2503.02692 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2503.02692

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-22
Handle: RePEc:arx:papers:2503.02692