Function-Coherent Gambles with Non-Additive Sequential Dynamics
Gregory Wheeler
Papers from arXiv.org
Abstract:
The desirable gambles framework provides a rigorous foundation for imprecise probability theory but relies heavily on linear utility via its coherence axioms. In our related work, we introduced function-coherent gambles to accommodate non-linear utility. However, when repeated gambles are played over time -- especially in intertemporal choice where rewards compound multiplicatively -- the standard additive combination axiom fails to capture the appropriate long-run evaluation. In this paper we extend the framework by relaxing the additive combination axiom and introducing a nonlinear combination operator that effectively aggregates repeated gambles in the log-domain. This operator preserves the time-average (geometric) growth rate and addresses the ergodicity problem. We prove the key algebraic properties of the operator, discuss its impact on coherence, risk assessment, and representation, and provide a series of illustrative examples. Our approach bridges the gap between expectation values and time averages and unifies normative theory with empirically observed non-stationary reward dynamics.
Date: 2025-02
References: Add references at CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2503.02889 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2503.02889
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().