EconPapers    
Economics at your fingertips  
 

CoFinDiff: Controllable Financial Diffusion Model for Time Series Generation

Yuki Tanaka, Ryuji Hashimoto, Takehiro Takayanagi, Zhe Piao, Yuri Murayama and Kiyoshi Izumi

Papers from arXiv.org

Abstract: The generation of synthetic financial data is a critical technology in the financial domain, addressing challenges posed by limited data availability. Traditionally, statistical models have been employed to generate synthetic data. However, these models fail to capture the stylized facts commonly observed in financial data, limiting their practical applicability. Recently, machine learning models have been introduced to address the limitations of statistical models; however, controlling synthetic data generation remains challenging. We propose CoFinDiff (Controllable Financial Diffusion model), a synthetic financial data generation model based on conditional diffusion models that accept conditions about the synthetic time series. By incorporating conditions derived from price data into the conditional diffusion model via cross-attention, CoFinDiff learns the relationships between the conditions and the data, generating synthetic data that align with arbitrary conditions. Experimental results demonstrate that: (i) synthetic data generated by CoFinDiff capture stylized facts; (ii) the generated data accurately meet specified conditions for trends and volatility; (iii) the diversity of the generated data surpasses that of the baseline models; and (iv) models trained on CoFinDiff-generated data achieve improved performance in deep hedging task.

Date: 2025-03
References: Add references at CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2503.04164 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2503.04164

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-22
Handle: RePEc:arx:papers:2503.04164