Hedging with Sparse Reward Reinforcement Learning
Yiheng Ding,
Gangnan Yuan,
Dewei Zuo and
Ting Gao
Papers from arXiv.org
Abstract:
Derivatives, as a critical class of financial instruments, isolate and trade the price attributes of risk assets such as stocks, commodities, and indices, aiding risk management and enhancing market efficiency. However, traditional hedging models, constrained by assumptions such as continuous trading and zero transaction costs, fail to satisfy risk control requirements in complex and uncertain real-world markets. With advances in computing technology and deep learning, data-driven trading strategies are becoming increasingly prevalent. This thesis proposes a derivatives hedging framework integrating deep learning and reinforcement learning. The framework comprises a probabilistic forecasting model and a hedging agent, enabling market probability prediction, derivative pricing, and hedging. Specifically, we design a spatiotemporal attention-based probabilistic financial time series forecasting Transformer to address the scarcity of derivatives hedging data. A low-rank attention mechanism compresses high-dimensional assets into a low-dimensional latent space, capturing nonlinear asset relationships. The Transformer models sequential dependencies within this latent space, improving market probability forecasts and constructing an online training environment for downstream hedging tasks. Additionally, we incorporate generalized geometric Brownian motion to develop a risk-neutral pricing approach for derivatives. We model derivatives hedging as a reinforcement learning problem with sparse rewards and propose a behavior cloning-based recurrent proximal policy optimization (BC-RPPO) algorithm. This pretraining-finetuning framework significantly enhances the hedging agent's performance. Numerical experiments in the U.S. and Chinese financial markets demonstrate our method's superiority over traditional approaches.
Date: 2025-03
References: Add references at CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2503.04218 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2503.04218
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().