EconPapers    
Economics at your fingertips  
 

On a new robust method of inference for general time series models

Zihan Wang, Xinghao Qiao, Dong Li and Howell Tong

Papers from arXiv.org

Abstract: In this article, we propose a novel logistic quasi-maximum likelihood estimation (LQMLE) for general parametric time series models. Compared to the classical Gaussian QMLE and existing robust estimations, it enjoys many distinctive advantages, such as robustness in respect of distributional misspecification and heavy-tailedness of the innovation, more resiliency to outliers, smoothness and strict concavity of the log logistic quasi-likelihood function, and boundedness of the influence function among others. Under some mild conditions, we establish the strong consistency and asymptotic normality of the LQMLE. Moreover, we propose a new and vital parameter identifiability condition to ensure desirable asymptotics of the LQMLE. Further, based on the LQMLE, we consider the Wald test and the Lagrange multiplier test for the unknown parameters, and derive the limiting distributions of the corresponding test statistics. The applicability of our methodology is demonstrated by several time series models, including DAR, GARCH, ARMA-GARCH, DTARMACH, and EXPAR. Numerical simulation studies are carried out to assess the finite-sample performance of our methodology, and an empirical example is analyzed to illustrate its usefulness.

Date: 2025-03
References: Add references at CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2503.08655 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2503.08655

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-22
Handle: RePEc:arx:papers:2503.08655