EconPapers    
Economics at your fingertips  
 

Hierarchical Minimum Variance Portfolios: A Theoretical and Algorithmic Approach

Gamal Mograby

Papers from arXiv.org

Abstract: We introduce a novel approach to portfolio optimization that leverages hierarchical graph structures and the Schur complement method to systematically reduce computational complexity while preserving full covariance information. Inspired by Lopez de Prados hierarchical risk parity and Cottons Schur complement methods, our framework models the covariance matrix as an adjacency-like structure of a hierarchical graph. We demonstrate that portfolio optimization can be recursively reduced across hierarchical levels, allowing optimal weights to be computed efficiently by inverting only small submatrices regardless of portfolio size. Moreover, we translate our results into a recursive algorithm that constructs optimal portfolio allocations. Our results reveal a transparent and mathematically rigorous connection between classical Markowitz mean-variance optimization, hierarchical clustering, and the Schur complement method.

Date: 2025-03
References: Add references at CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2503.12328 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2503.12328

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-22
Handle: RePEc:arx:papers:2503.12328