Simultaneous Inference Bands for Autocorrelations
Uwe Hassler,
Marc-Oliver Pohle and
Tanja Zahn
Papers from arXiv.org
Abstract:
Sample autocorrelograms typically come with significance bands (non-rejection regions) for the null hypothesis of temporal independence. These bands have two shortcomings. First, they build on pointwise intervals and suffer from joint undercoverage (overrejection) under the null hypothesis. Second, if this null is clearly violated one would rather prefer to see confidence bands to quantify estimation uncertainty. We propose and discuss both simultaneous significance bands and simultaneous confidence bands for time series and series of regression residuals. They are as easy to construct as their pointwise counterparts and at the same time provide an intuitive and visual quantification of sampling uncertainty as well as valid statistical inference. For regression residuals, we show that for static regressions the asymptotic variances underlying the construction of the bands are as for observed time series and for dynamic regressions (with lagged endogenous regressors) we show how they need to be adjusted. We study theoretical properties of simultaneous significance bands and two types of simultaneous confidence bands (sup-t and Bonferroni) and analyse their finite-sample performance in a simulation study. Finally, we illustrate the use of the bands in an application to monthly US inflation and residuals from Phillips curve regressions.
Date: 2025-03
References: Add references at CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2503.18560 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2503.18560
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().