A Causal Perspective of Stock Prediction Models
Songci Xu,
Qiangqiang Cheng and
Chi-Guhn Lee
Papers from arXiv.org
Abstract:
In the realm of stock prediction, machine learning models encounter considerable obstacles due to the inherent low signal-to-noise ratio and the nonstationary nature of financial markets. These challenges often result in spurious correlations and unstable predictive relationships, leading to poor performance of models when applied to out-of-sample (OOS) domains. To address these issues, we investigate \textit{Domain Generalization} techniques, with a particular focus on causal representation learning to improve a prediction model's generalizability to OOS domains. By leveraging multi-factor models from econometrics, we introduce a novel error bound that explicitly incorporates causal relationships. In addition, we present the connection between the proposed error bound and market nonstationarity. We also develop a \textit{Causal Discovery} technique to discover invariant feature representations, which effectively mitigates the proposed error bound, and the influence of spurious correlations on causal discovery is rigorously examined. Our theoretical findings are substantiated by numerical results, showcasing the effectiveness of our approach in enhancing the generalizability of stock prediction models.
Date: 2025-03
References: Add references at CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2503.20987 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2503.20987
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().