EconPapers    
Economics at your fingertips  
 

Bayesian Model Averaging in Causal Instrumental Variable Models

Gregor Steiner and Mark Steel

Papers from arXiv.org

Abstract: Instrumental variables are a popular tool to infer causal effects under unobserved confounding, but choosing suitable instruments is challenging in practice. We propose gIVBMA, a Bayesian model averaging procedure that addresses this challenge by averaging across different sets of instrumental variables and covariates in a structural equation model. Our approach extends previous work through a scale-invariant prior structure and accommodates non-Gaussian outcomes and treatments, offering greater flexibility than existing methods. The computational strategy uses conditional Bayes factors to update models separately for the outcome and treatments. We prove that this model selection procedure is consistent. By explicitly accounting for model uncertainty, gIVBMA allows instruments and covariates to switch roles and provides robustness against invalid instruments. In simulation experiments, gIVBMA outperforms current state-of-the-art methods. We demonstrate its usefulness in two empirical applications: the effects of malaria and institutions on income per capita and the returns to schooling. A software implementation of gIVBMA is available in Julia.

Date: 2025-04, Revised 2025-05
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2504.13520 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2504.13520

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-06-10
Handle: RePEc:arx:papers:2504.13520