A Unifying Framework for Robust and Efficient Inference with Unstructured Data
Jacob Carlson and
Melissa Dell
Papers from arXiv.org
Abstract:
This paper presents a general framework for conducting efficient inference on parameters derived from unstructured data, which include text, images, audio, and video. Economists have long used unstructured data by first extracting low-dimensional structured features (e.g., the topic or sentiment of a text), since the raw data are too high-dimensional and uninterpretable to include directly in empirical analyses. The rise of deep neural networks has accelerated this practice by greatly reducing the costs of extracting structured data at scale, but neural networks do not make generically unbiased predictions. This potentially propagates bias to the downstream estimators that incorporate imputed structured data, and the availability of different off-the-shelf neural networks with different biases moreover raises p-hacking concerns. To address these challenges, we reframe inference with unstructured data as a problem of missing structured data, where structured variables are imputed from high-dimensional unstructured inputs. This perspective allows us to apply classic results from semiparametric inference, leading to estimators that are valid, efficient, and robust. We formalize this approach with MAR-S, a framework that unifies and extends existing methods for debiased inference using machine learning predictions, connecting them to familiar problems such as causal inference. Within this framework, we develop robust and efficient estimators for both descriptive and causal estimands and address challenges like inference with aggregated and transformed missing structured data-a common scenario that is not covered by existing work. These methods-and the accompanying implementation package-provide economists with accessible tools for constructing unbiased estimators using unstructured data in a wide range of applications, as we demonstrate by re-analyzing several influential studies.
Date: 2025-05, Revised 2025-07
New Economics Papers: this item is included in nep-big, nep-ecm and nep-mac
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2505.00282 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2505.00282
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().