Pre-Training Estimators for Structural Models: Application to Consumer Search
Yanhao 'Max' Wei and
Zhenling Jiang
Papers from arXiv.org
Abstract:
We develop pre-trained estimators for structural econometric models. The estimator uses a neural net to recognize the structural model's parameter from data patterns. Once trained, the estimator can be shared and applied to different datasets at negligible cost and effort. Under sufficient training, the estimator converges to the Bayesian posterior given the data patterns. As an illustration, we construct a pretrained estimator for a sequential search model (available at pnnehome.github.io). Estimation takes only seconds and achieves high accuracy on 12 real datasets. More broadly, pretrained estimators can make structural models much easier to use and more accessible.
Date: 2025-05, Revised 2025-11
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2505.00526 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2505.00526
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().