EconPapers    
Economics at your fingertips  
 

The Exploratory Multi-Asset Mean-Variance Portfolio Selection using Reinforcement Learning

Yu Li, Yuhan Wu and Shuhua Zhang

Papers from arXiv.org

Abstract: In this paper, we study the continuous-time multi-asset mean-variance (MV) portfolio selection using a reinforcement learning (RL) algorithm, specifically the soft actor-critic (SAC) algorithm, in the time-varying financial market. A family of Gaussian portfolio selections is derived, and a policy iteration process is crafted to learn the optimal exploratory portfolio selection. We prove the convergence of the policy iteration process theoretically, based on which the SAC algorithm is developed. To improve the algorithm's stability and the learning accuracy in the multi-asset scenario, we divide the model parameters that influence the optimal portfolio selection into three parts, and learn each part progressively. Numerical studies in the simulated and real financial markets confirm the superior performance of the proposed SAC algorithm under various criteria.

Date: 2025-05
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2505.07537 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2505.07537

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-06-14
Handle: RePEc:arx:papers:2505.07537