Monte-Carlo Option Pricing in Quantum Parallel
Robert Scriba,
Yuying Li and
Jingbo B Wang
Papers from arXiv.org
Abstract:
Financial derivative pricing is a significant challenge in finance, involving the valuation of instruments like options based on underlying assets. While some cases have simple solutions, many require complex classical computational methods like Monte Carlo simulations and numerical techniques. However, as derivative complexities increase, these methods face limitations in computational power. Cases involving Non-Vanilla Basket pricing, American Options, and derivative portfolio risk analysis need extensive computations in higher-dimensional spaces, posing challenges for classical computers. Quantum computing presents a promising avenue by harnessing quantum superposition and entanglement, allowing the handling of high-dimensional spaces effectively. In this paper, we introduce a self-contained and all-encompassing quantum algorithm that operates without reliance on oracles or presumptions. More specifically, we develop an effective stochastic method for simulating exponentially many potential asset paths in quantum parallel, leading to a highly accurate final distribution of stock prices. Furthermore, we demonstrate how this algorithm can be extended to price more complex options and analyze risk within derivative portfolios.
Date: 2025-05
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2505.09459 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2505.09459
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().