A Set-Sequence Model for Time Series
Elliot L. Epstein,
Apaar Sadhwani and
Kay Giesecke
Papers from arXiv.org
Abstract:
Many prediction problems across science and engineering, especially in finance and economics, involve large cross-sections of individual time series, where each unit (e.g., a loan, stock, or customer) is driven by unit-level features and latent cross-sectional dynamics. While sequence models have advanced per-unit temporal prediction, capturing cross-sectional effects often still relies on hand-crafted summary features. We propose Set-Sequence, a model that learns cross-sectional structure directly, enhancing expressivity and eliminating manual feature engineering. At each time step, a permutation-invariant Set module summarizes the unit set; a Sequence module then models each unit's dynamics conditioned on both its features and the learned summary. The architecture accommodates unaligned series, supports varying numbers of units at inference, integrates with standard sequence backbones (e.g., Transformers), and scales linearly in cross-sectional size. Across a synthetic contagion task and two large-scale real-world applications, equity portfolio optimization and loan risk prediction, Set-Sequence significantly outperforms strong baselines, delivering higher Sharpe ratios, improved AUCs, and interpretable cross-sectional summaries.
Date: 2025-05, Revised 2025-10
New Economics Papers: this item is included in nep-ecm, nep-ets and nep-for
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2505.11243 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2505.11243
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().