Multivariate Affine GARCH with Heavy Tails: A Unified Framework for Portfolio Optimization and Option Valuation
Ayush Jha,
Abootaleb Shirvani,
Ali Jaffri,
Svetlozar T. Rachev and
Frank J. Fabozzi
Papers from arXiv.org
Abstract:
This paper develops and estimates a multivariate affine GARCH(1,1) model with Normal Inverse Gaussian innovations that captures time-varying volatility, heavy tails, and dynamic correlation across asset returns. We generalize the Heston-Nandi framework to a multivariate setting and apply it to 30 Dow Jones Industrial Average stocks. The model jointly supports three core financial applications: dynamic portfolio optimization, wealth path simulation, and option pricing. Closed-form solutions are derived for a Constant Relative Risk Aversion (CRRA) investor's intertemporal asset allocation, and we implement a forward-looking risk-adjusted performance comparison against Merton-style constant strategies. Using the model's conditional volatilities, we also construct implied volatility surfaces for European options, capturing skew and smile features. Empirically, we document substantial wealth-equivalent utility losses from ignoring time-varying correlation and tail risk. These findings underscore the value of a unified econometric framework for analyzing joint asset dynamics and for managing portfolio and derivative exposures under non-Gaussian risks.
Date: 2025-05
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2505.12198 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2505.12198
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().