Berk-Nash Rationalizability
Ignacio Esponda and
Demian Pouzo
Papers from arXiv.org
Abstract:
Misspecified learning -- where agents rely on simplified or biased models -- offers a unifying framework for analyzing behavioral biases, cognitive constraints, and systematic misperceptions. We introduce Berk--Nash rationalizability, a new solution concept for such settings that parallels rationalizability in games. Our main result shows that, with probability one, every limit action -- any action played or approached infinitely often -- is Berk--Nash rationalizable. This holds regardless of whether behavior converges and offers a tractable way to bound long-run behavior without solving complex learning dynamics. We illustrate this advantage with a known example and identify general classes of environments where the rationalizable set can be easily characterized.
Date: 2025-05, Revised 2025-06
New Economics Papers: this item is included in nep-evo, nep-gth and nep-mic
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2505.20708 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2505.20708
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().