Debiased Ill-Posed Regression
AmirEmad Ghassami,
James M. Robins and
Andrea Rotnitzky
Papers from arXiv.org
Abstract:
In various statistical settings, the goal is to estimate a function which is restricted by the statistical model only through a conditional moment restriction. Prominent examples include the nonparametric instrumental variable framework for estimating the structural function of the outcome variable, and the proximal causal inference framework for estimating the bridge functions. A common strategy in the literature is to find the minimizer of the projected mean squared error. However, this approach can be sensitive to misspecification or slow convergence rate of the estimators of the involved nuisance components. In this work, we propose a debiased estimation strategy based on the influence function of a modification of the projected error and demonstrate its finite-sample convergence rate. Our proposed estimator possesses a second-order bias with respect to the involved nuisance functions and a desirable robustness property with respect to the misspecification of one of the nuisance functions. The proposed estimator involves a hyper-parameter, for which the optimal value depends on potentially unknown features of the underlying data-generating process. Hence, we further propose a hyper-parameter selection approach based on cross-validation and derive an error bound for the resulting estimator. This analysis highlights the potential rate loss due to hyper-parameter selection and underscore the importance and advantages of incorporating debiasing in this setting. We also study the application of our approach to the estimation of regular parameters in a specific parameter class, which are linear functionals of the solutions to the conditional moment restrictions and provide sufficient conditions for achieving root-n consistency using our debiased estimator.
Date: 2025-05
References: Add references at CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2505.20787 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2505.20787
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().