EconPapers    
Economics at your fingertips  
 

Conditional Method Confidence Set

Lukas Bauer and Ekaterina Kazak

Papers from arXiv.org

Abstract: This paper proposes a Conditional Method Confidence Set (CMCS) which allows to select the best subset of forecasting methods with equal predictive ability conditional on a specific economic regime. The test resembles the Model Confidence Set by Hansen et al. (2011) and is adapted for conditional forecast evaluation. We show the asymptotic validity of the proposed test and illustrate its properties in a simulation study. The proposed testing procedure is particularly suitable for stress-testing of financial risk models required by the regulators. We showcase the empirical relevance of the CMCS using the stress-testing scenario of Expected Shortfall. The empirical evidence suggests that the proposed CMCS procedure can be used as a robust tool for forecast evaluation of market risk models for different economic regimes.

Date: 2025-05
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2505.21278 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2505.21278

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-06-28
Handle: RePEc:arx:papers:2505.21278