Model-Free Deep Hedging with Transaction Costs and Light Data Requirements
Pierre Brugi\`ere and
Gabriel Turinici
Papers from arXiv.org
Abstract:
Option pricing theory, such as the Black and Scholes (1973) model, provides an explicit solution to construct a strategy that perfectly hedges an option in a continuous-time setting. In practice, however, trading occurs in discrete time and often involves transaction costs, making the direct application of continuous-time solutions potentially suboptimal. Previous studies, such as those by Buehler et al. (2018), Buehler et al. (2019) and Cao et al. (2019), have shown that deep learning or reinforcement learning can be used to derive better hedging strategies than those based on continuous-time models. However, these approaches typically rely on a large number of trajectories (of the order of $10^5$ or $10^6$) to train the model. In this work, we show that using as few as 256 trajectories is sufficient to train a neural network that significantly outperforms, in the Geometric Brownian Motion framework, both the classical Black & Scholes formula and the Leland model, which is arguably one of the most effective explicit alternatives for incorporating transaction costs. The ability to train neural networks with such a small number of trajectories suggests the potential for more practical and simple implementation on real-time financial series.
Date: 2025-05
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2505.22836 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2505.22836
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().