Stock Market Telepathy: Graph Neural Networks Predicting the Secret Conversations between MINT and G7 Countries
Nurbanu Bursa
Papers from arXiv.org
Abstract:
Emerging economies, particularly the MINT countries (Mexico, Indonesia, Nigeria, and T\"urkiye), are gaining influence in global stock markets, although they remain susceptible to the economic conditions of developed countries like the G7 (Canada, France, Germany, Italy, Japan, the United Kingdom, and the United States). This interconnectedness and sensitivity of financial markets make understanding these relationships crucial for investors and policymakers to predict stock price movements accurately. To this end, we examined the main stock market indices of G7 and MINT countries from 2012 to 2024, using a recent graph neural network (GNN) algorithm called multivariate time series forecasting with graph neural network (MTGNN). This method allows for considering complex spatio-temporal connections in multivariate time series. In the implementations, MTGNN revealed that the US and Canada are the most influential G7 countries regarding stock indices in the forecasting process, and Indonesia and T\"urkiye are the most influential MINT countries. Additionally, our results showed that MTGNN outperformed traditional methods in forecasting the prices of stock market indices for MINT and G7 countries. Consequently, the study offers valuable insights into economic blocks' markets and presents a compelling empirical approach to analyzing global stock market dynamics using MTGNN.
Date: 2025-06
New Economics Papers: this item is included in nep-ets, nep-fmk, nep-for, nep-net and nep-sea
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2506.01945 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2506.01945
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().