EconPapers    
Economics at your fingertips  
 

TaxAgent: How Large Language Model Designs Fiscal Policy

Jizhou Wang, Xiaodan Fang, Lei Huang and Yongfeng Huang

Papers from arXiv.org

Abstract: Economic inequality is a global challenge, intensifying disparities in education, healthcare, and social stability. Traditional systems like the U.S. federal income tax reduce inequality but lack adaptability. Although models like the Saez Optimal Taxation adjust dynamically, they fail to address taxpayer heterogeneity and irrational behavior. This study introduces TaxAgent, a novel integration of large language models (LLMs) with agent-based modeling (ABM) to design adaptive tax policies. In our macroeconomic simulation, heterogeneous H-Agents (households) simulate real-world taxpayer behaviors while the TaxAgent (government) utilizes LLMs to iteratively optimize tax rates, balancing equity and productivity. Benchmarked against Saez Optimal Taxation, U.S. federal income taxes, and free markets, TaxAgent achieves superior equity-efficiency trade-offs. This research offers a novel taxation solution and a scalable, data-driven framework for fiscal policy evaluation.

Date: 2025-06
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2506.02838 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2506.02838

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-06-21
Handle: RePEc:arx:papers:2506.02838