EconPapers    
Economics at your fingertips  
 

Learning in Random Utility Models Via Online Decision Problems

Emerson Melo

Papers from arXiv.org

Abstract: This paper examines the Random Utility Model (RUM) in repeated stochastic choice settings where decision-makers lack full information about payoffs. We propose a gradient-based learning algorithm that embeds RUM into an online decision-making framework. Our analysis establishes Hannan consistency for a broad class of RUMs, meaning the average regret relative to the best fixed action in hindsight vanishes over time. We also show that our algorithm is equivalent to the Follow-The-Regularized-Leader (FTRL) method, offering an economically grounded approach to online optimization. Applications include modeling recency bias and characterizing coarse correlated equilibria in normal-form games

Date: 2025-06
References: Add references at CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2506.16030 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2506.16030

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-07-26
Handle: RePEc:arx:papers:2506.16030