SABR-Informed Multitask Gaussian Process: A Synthetic-to-Real Framework for Implied Volatility Surface Construction
Jirong Zhuang and
Xuan Wu
Papers from arXiv.org
Abstract:
Constructing the Implied Volatility Surface (IVS) is a challenging task in quantitative finance due to the complexity of real markets and the sparsity of market data. Structural models like Stochastic Alpha Beta Rho (SABR) model offer interpretability and theoretical consistency but lack flexibility, while purely data-driven methods such as Gaussian Process regression can struggle with sparse data. We introduce SABR-Informed Multi-Task Gaussian Process (SABR-MTGP), treating IVS construction as a multi-task learning problem. Our method uses a dense synthetic dataset from a calibrated SABR model as a source task to inform the construction based on sparse market data (the target task). The MTGP framework captures task correlation and transfers structural information adaptively, improving predictions particularly in data-scarce regions. Experiments using Heston-generated ground truth data under various market conditions show that SABR-MTGP outperforms both standard Gaussian process regression and SABR across different maturities. Furthermore, an application to real SPX market data demonstrates the method's practical applicability and its ability to produce stable and realistic surfaces. This confirms our method balances structural guidance from SABR with the flexibility needed for market data.
Date: 2025-06
References: Add references at CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2506.22888 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2506.22888
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().