EconPapers    
Economics at your fingertips  
 

Optimization Method of Multi-factor Investment Model Driven by Deep Learning for Risk Control

Ruisi Li and Xinhui Gu

Papers from arXiv.org

Abstract: Propose a deep learning driven multi factor investment model optimization method for risk control. By constructing a deep learning model based on Long Short Term Memory (LSTM) and combining it with a multi factor investment model, we optimize factor selection and weight determination to enhance the model's adaptability and robustness to market changes. Empirical analysis shows that the LSTM model is significantly superior to the benchmark model in risk control indicators such as maximum retracement, Sharp ratio and value at risk (VaR), and shows strong adaptability and robustness in different market environments. Furthermore, the model is applied to the actual portfolio to optimize the asset allocation, which significantly improves the performance of the portfolio, provides investors with more scientific and accurate investment decision-making basis, and effectively balances the benefits and risks.

Date: 2025-06
References: Add references at CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2507.00332 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2507.00332

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-07-26
Handle: RePEc:arx:papers:2507.00332