EconPapers    
Economics at your fingertips  
 

Comparing Misspecified Models with Big Data: A Variational Bayesian Perspective

Yong Li, Sushanta K. Mallick, Tao Zeng and Junxing Zhang

Papers from arXiv.org

Abstract: Optimal data detection in massive multiple-input multiple-output (MIMO) systems often requires prohibitively high computational complexity. A variety of detection algorithms have been proposed in the literature, offering different trade-offs between complexity and detection performance. In recent years, Variational Bayes (VB) has emerged as a widely used method for addressing statistical inference in the context of massive data. This study focuses on misspecified models and examines the risk functions associated with predictive distributions derived from variational posterior distributions. These risk functions, defined as the expectation of the Kullback-Leibler (KL) divergence between the true data-generating density and the variational predictive distributions, provide a framework for assessing predictive performance. We propose two novel information criteria for predictive model comparison based on these risk functions. Under certain regularity conditions, we demonstrate that the proposed information criteria are asymptotically unbiased estimators of their respective risk functions. Through comprehensive numerical simulations and empirical applications in economics and finance, we demonstrate the effectiveness of these information criteria in comparing misspecified models in the context of massive data.

Date: 2025-07
References: Add references at CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2507.00763 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2507.00763

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-07-26
Handle: RePEc:arx:papers:2507.00763