End-to-End Large Portfolio Optimization for Variance Minimization with Neural Networks through Covariance Cleaning
Christian Bongiorno,
Efstratios Manolakis and
Rosario Nunzio Mantegna
Papers from arXiv.org
Abstract:
We develop a rotation-invariant neural network that provides the global minimum-variance portfolio by jointly learning how to lag-transform historical returns and how to regularise both the eigenvalues and the marginal volatilities of large equity covariance matrices. This explicit mathematical mapping offers clear interpretability of each module's role, so the model cannot be regarded as a pure black-box. The architecture mirrors the analytical form of the global minimum-variance solution yet remains agnostic to dimension, so a single model can be calibrated on panels of a few hundred stocks and applied, without retraining, to one thousand US equities-a cross-sectional jump that demonstrates robust out-of-sample generalisation. The loss function is the future realized minimum portfolio variance and is optimized end-to-end on real daily returns. In out-of-sample tests from January 2000 to December 2024 the estimator delivers systematically lower realised volatility, smaller maximum drawdowns, and higher Sharpe ratios than the best analytical competitors, including state-of-the-art non-linear shrinkage. Furthermore, although the model is trained end-to-end to produce an unconstrained (long-short) minimum-variance portfolio, we show that its learned covariance representation can be used in general optimizers under long-only constraints with virtually no loss in its performance advantage over competing estimators. These gains persist when the strategy is executed under a highly realistic implementation framework that models market orders at the auctions, empirical slippage, exchange fees, and financing charges for leverage, and they remain stable during episodes of acute market stress.
Date: 2025-07, Revised 2025-07
References: Add references at CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2507.01918 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2507.01918
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().