EconPapers    
Economics at your fingertips  
 

Detecting Fraud in Financial Networks: A Semi-Supervised GNN Approach with Granger-Causal Explanations

Linh Nguyen, Marcel Boersma and Erman Acar

Papers from arXiv.org

Abstract: Fraudulent activity in the financial industry costs billions annually. Detecting fraud, therefore, is an essential yet technically challenging task that requires carefully analyzing large volumes of data. While machine learning (ML) approaches seem like a viable solution, applying them successfully is not so easy due to two main challenges: (1) the sparsely labeled data, which makes the training of such approaches challenging (with inherent labeling costs), and (2) lack of explainability for the flagged items posed by the opacity of ML models, that is often required by business regulations. This article proposes SAGE-FIN, a semi-supervised graph neural network (GNN) based approach with Granger causal explanations for Financial Interaction Networks. SAGE-FIN learns to flag fraudulent items based on weakly labeled (or unlabelled) data points. To adhere to regulatory requirements, the flagged items are explained by highlighting related items in the network using Granger causality. We empirically validate the favorable performance of SAGE-FIN on a real-world dataset, Bipartite Edge-And-Node Attributed financial network (Elliptic++), with Granger-causal explanations for the identified fraudulent items without any prior assumption on the network structure.

Date: 2025-06
References: Add references at CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2507.01980 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2507.01980

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-07-26
Handle: RePEc:arx:papers:2507.01980