Galerkin-ARIMA: A Two-Stage Polynomial Regression Framework for Fast Rolling One-Step-Ahead Forecasting
Haojie Liu and
Zihan Lin
Papers from arXiv.org
Abstract:
We introduce Galerkin-ARIMA, a novel time-series forecasting framework that integrates Galerkin projection techniques with the classical ARIMA model to capture potentially nonlinear dependencies in lagged observations. By replacing the fixed linear autoregressive component with a spline-based basis expansion, Galerkin-ARIMA flexibly approximates the underlying relationship among past values via ordinary least squares, while retaining the moving-average structure and Gaussian innovation assumptions of ARIMA. We derive closed-form solutions for both the AR and MA components using two-stage Galerkin projections, establish conditions for asymptotic unbiasedness and consistency, and analyze the bias-variance trade-off under basis-size growth. Complexity analysis reveals that, for moderate basis dimensions, our approach can substantially reduce computational cost compared to maximum-likelihood ARIMA estimation. Through extensive simulations on four synthetic processes-including noisy ARMA, seasonal, trend-AR, and nonlinear recursion series-we demonstrate that Galerkin-ARIMA matches or closely approximates ARIMA's forecasting accuracy while achieving orders-of-magnitude speedups in rolling forecasting tasks. These results suggest that Galerkin-ARIMA offers a powerful, efficient alternative for modeling complex time series dynamics in high-volume or real-time applications.
Date: 2025-07, Revised 2025-07
References: Add references at CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2507.07469 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2507.07469
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().