A Comparative Analysis of Statistical and Machine Learning Models for Outlier Detection in Bitcoin Limit Order Books
Ivan Letteri
Papers from arXiv.org
Abstract:
The detection of outliers within cryptocurrency limit order books (LOBs) is of paramount importance for comprehending market dynamics, particularly in highly volatile and nascent regulatory environments. This study conducts a comprehensive comparative analysis of robust statistical methods and advanced machine learning techniques for real-time anomaly identification in cryptocurrency LOBs. Within a unified testing environment, named AITA Order Book Signal (AITA-OBS), we evaluate the efficacy of thirteen diverse models to identify which approaches are most suitable for detecting potentially manipulative trading behaviours. An empirical evaluation, conducted via backtesting on a dataset of 26,204 records from a major exchange, demonstrates that the top-performing model, Empirical Covariance (EC), achieves a 6.70% gain, significantly outperforming a standard Buy-and-Hold benchmark. These findings underscore the effectiveness of outlier-driven strategies and provide insights into the trade-offs between model complexity, trade frequency, and performance. This study contributes to the growing corpus of research on cryptocurrency market microstructure by furnishing a rigorous benchmark of anomaly detection models and highlighting their potential for augmenting algorithmic trading and risk management.
Date: 2025-07
References: Add references at CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2507.14960 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2507.14960
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().