Optimal Trading under Instantaneous and Persistent Price Impact, Predictable Returns and Multiscale Stochastic Volatility
Patrick Chan,
Ronnie Sircar and
Iosif Zimbidis
Papers from arXiv.org
Abstract:
We consider a dynamic portfolio optimization problem that incorporates predictable returns, instantaneous transaction costs, price impact, and stochastic volatility, extending the classical results of Garleanu and Pedersen (2013), which assume constant volatility. Constructing the optimal portfolio strategy in this general setting is challenging due to the nonlinear nature of the resulting Hamilton-Jacobi-Bellman (HJB) equations. To address this, we propose a multi-scale volatility expansion that captures stochastic volatility dynamics across different time scales. Specifically, the analysis involves a singular perturbation for the fast mean-reverting volatility factor and a regular perturbation for the slow-moving factor. We also introduce an approximation for small price impact and demonstrate its numerical accuracy. We formally derive asymptotic approximations up to second order and use Monte Carlo simulations to show how incorporating these corrections improves the Profit and Loss (PnL) of the resulting portfolio strategy.
Date: 2025-07
References: Add references at CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2507.17162 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2507.17162
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().