EconPapers    
Economics at your fingertips  
 

Your AI, Not Your View: The Bias of LLMs in Investment Analysis

Hoyoung Lee, Junhyuk Seo, Suhwan Park, Junhyeong Lee, Wonbin Ahn, Chanyeol Choi, Alejandro Lopez-Lira and Yongjae Lee

Papers from arXiv.org

Abstract: In finance, Large Language Models (LLMs) face frequent knowledge conflicts arising from discrepancies between their pre-trained parametric knowledge and real-time market data. These conflicts are especially problematic in real-world investment services, where a model's inherent biases can misalign with institutional objectives, leading to unreliable recommendations. Despite this risk, the intrinsic investment biases of LLMs remain underexplored. We propose an experimental framework to investigate emergent behaviors in such conflict scenarios, offering a quantitative analysis of bias in LLM-based investment analysis. Using hypothetical scenarios with balanced and imbalanced arguments, we extract the latent biases of models and measure their persistence. Our analysis, centered on sector, size, and momentum, reveals distinct, model-specific biases. Across most models, a tendency to prefer technology stocks, large-cap stocks, and contrarian strategies is observed. These foundational biases often escalate into confirmation bias, causing models to cling to initial judgments even when faced with increasing counter-evidence. A public leaderboard benchmarking bias across a broader set of models is available at https://linqalpha.com/leaderboard

Date: 2025-07, Revised 2025-10
New Economics Papers: this item is included in nep-ain, nep-big, nep-cmp, nep-dcm and nep-fmk
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://arxiv.org/pdf/2507.20957 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2507.20957

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-12-25
Handle: RePEc:arx:papers:2507.20957