EconPapers    
Economics at your fingertips  
 

Note on Selection Bias in Observational Estimates of Algorithmic Progress

Parker Whitfill

Papers from arXiv.org

Abstract: Ho et. al (2024) attempts to estimate the degree of algorithmic progress from language models. They collect observational data on language models' loss and compute over time, and argue that as time has passed, language models' algorithmic efficiency has been rising. That is, the loss achieved for fixed compute has been dropping over time. In this note, I raise one potential methodological problem with the estimation strategy. Intuitively, if part of algorithmic quality is latent, and compute choices are endogenous to algorithmic quality, then resulting estimates of algorithmic quality will be contaminated by selection bias.

Date: 2025-08, Revised 2025-08
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2508.11033 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2508.11033

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-10-04
Handle: RePEc:arx:papers:2508.11033