EconPapers    
Economics at your fingertips  
 

Estimation in linear models with clustered data

Anna Mikusheva, Mikkel S{\o}lvsten and Baiyun Jing

Papers from arXiv.org

Abstract: We study linear regression models with clustered data, high-dimensional controls, and a complicated structure of exclusion restrictions. We propose a correctly centered internal IV estimator that accommodates a variety of exclusion restrictions and permits within-cluster dependence. The estimator has a simple leave-out interpretation and remains computationally tractable. We derive a central limit theorem for its quadratic form and propose a robust variance estimator. We also develop inference methods that remain valid under weak identification. Our framework extends classical dynamic panel methods to more general clustered settings. An empirical application of a large-scale fiscal intervention in rural Kenya with spatial interference illustrates the approach.

Date: 2025-08
References: Add references at CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2508.12860 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2508.12860

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-08-19
Handle: RePEc:arx:papers:2508.12860