Variable selection for minimum-variance portfolios
Guilherme V. Moura,
Andr\'e P. Santos and
Hudson S. Torrent
Papers from arXiv.org
Abstract:
Machine learning (ML) methods have been successfully employed in identifying variables that can predict the equity premium of individual stocks. In this paper, we investigate if ML can also be helpful in selecting variables relevant for optimal portfolio choice. To address this question, we parameterize minimum-variance portfolio weights as a function of a large pool of firm-level characteristics as well as their second-order and cross-product transformations, yielding a total of 4,610 predictors. We find that the gains from employing ML to select relevant predictors are substantial: minimum-variance portfolios achieve lower risk relative to sparse specifications commonly considered in the literature, especially when non-linear terms are added to the predictor space. Moreover, some of the selected predictors that help decreasing portfolio risk also increase returns, leading to minimum-variance portfolios with good performance in terms of Shape ratios in some situations. Our evidence suggests that ad-hoc sparsity can be detrimental to the performance of minimum-variance characteristics-based portfolios.
Date: 2025-08
References: Add references at CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2508.14986 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2508.14986
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().