EconAgentic in DePIN Markets: A Large Language Model Approach to the Sharing Economy of Decentralized Physical Infrastructure
Yulin Liu and
Mocca Schweitzer
Papers from arXiv.org
Abstract:
The Decentralized Physical Infrastructure (DePIN) market is revolutionizing the sharing economy through token-based economics and smart contracts that govern decentralized operations. By 2024, DePIN projects have exceeded \$10 billion in market capitalization, underscoring their rapid growth. However, the unregulated nature of these markets, coupled with the autonomous deployment of AI agents in smart contracts, introduces risks such as inefficiencies and potential misalignment with human values. To address these concerns, we introduce EconAgentic, a Large Language Model (LLM)-powered framework designed to mitigate these challenges. Our research focuses on three key areas: 1) modeling the dynamic evolution of DePIN markets, 2) evaluating stakeholders' actions and their economic impacts, and 3) analyzing macroeconomic indicators to align market outcomes with societal goals. Through EconAgentic, we simulate how AI agents respond to token incentives, invest in infrastructure, and adapt to market conditions, comparing AI-driven decisions with human heuristic benchmarks. Our results show that EconAgentic provides valuable insights into the efficiency, inclusion, and stability of DePIN markets, contributing to both academic understanding and practical improvements in the design and governance of decentralized, tokenized economies.
Date: 2025-08
New Economics Papers: this item is included in nep-cmp
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2508.21368 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2508.21368
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().