Causal PDE-Control for Adaptive Portfolio Optimization under Partial Information
Alejandro Rodriguez Dominguez
Papers from arXiv.org
Abstract:
Classical portfolio models tend to degrade under structural breaks, whereas flexible machine-learning allocators often lack arbitrage consistency and interpretability. We propose Causal PDE-Control Models (CPCMs), a framework that links structural causal drivers, nonlinear filtering, and forward-backward PDE control to produce robust, transparent allocation rules under partial information. The main contributions are: (i) construction of scenario-conditional risk-neutral measures on the observable filtration via filtering, with an associated martingale representation; (ii) a projection-divergence duality that quantifies stability costs when deviating from the causal driver span; (iii) a causal completeness condition showing when a finite driver span captures systematic premia; and (iv) conformal transport and smooth subspace evolution guaranteeing time-consistent projections on a moving driver manifold. Markowitz, CAPM/APT, and Black-Litterman arise as limit or constrained cases; reinforcement learning and deep hedging appear as unconstrained approximations once embedded in the same pricing-control geometry. On a U.S. equity panel with 300+ candidate drivers, CPCM solvers achieve higher performance, lower turnover, and more persistent premia than econometric and ML benchmarks, offering a rigorous and interpretable basis for dynamic asset allocation in nonstationary markets.
Date: 2025-09, Revised 2025-11
New Economics Papers: this item is included in nep-cmp
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2509.09585 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2509.09585
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().