EconPapers    
Economics at your fingertips  
 

Out-of-sample gravity predictions and trade policy counterfactuals

Nicolas Apfel, Holger Breinlich, Nick Green, Dennis Novy, J. M. C. Santos Silva and Tom Zylkin

Papers from arXiv.org

Abstract: Gravity equations are often used to evaluate counterfactual trade policy scenarios, such as the effect of regional trade agreements on trade flows. In this paper, we argue that the suitability of gravity equations for this purpose crucially depends on their out-of-sample predictive power. We propose a methodology that compares different versions of the gravity equation, both among themselves and with machine learning-based forecast methods such as random forests and neural networks. We find that the 3-way gravity model is difficult to beat in terms of out-of-sample average predictive performance, further justifying its place as the predominant tool for applied trade policy analysis. However, when the goal is to predict individual bilateral trade flows, the 3-way model can be outperformed by an ensemble machine learning method.

Date: 2025-09
References: Add references at CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2509.11271 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2509.11271

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-09-16
Handle: RePEc:arx:papers:2509.11271